CoolProp 물성 DB 및 함수 구조
- CoolProp 물성 DB
CoolProp에서는 기본적으로 「PureFluid 122종류」, 「PredefinedMixture 105종류」의 물성 DB를 보유하고 있다.
해당 DB는 다음 링크를 통해 확인 가능하다.
1. PureFluid
http://www.coolprop.org/fluid_properties/PurePseudoPure.html
2. PredefinedMixture
http://www.coolprop.org/fluid_properties/Mixtures.html
- CoolProp 함수 구조
개요에서 설명하였듯이 CoolProp은 다양한 프로그램에서 연동되어 사용된다.
이번 장에서는 Excel VBA와 Python에서 사용하는 함수 구조를 설명할 것이다.
기본적으로 냉매는 PropsSI, 습공기는 HAPropsSI 함수를 사용하여 상태량을 계산한다.
「PropsSI」의 경우 상태량 계산을 위해 두 가지 상태량을 입력값으로 줘야하며 함수 구조는 다음과 같다.
Property_ref = PropsSI("Parameter", "Par_input_1", input_1_value, "Par_input_2", input_2_value, "Fluid_name")
<표1: 냉매의 Parameter 종류 및 설명>
Parameter | Units | Input/Output | Trivial | Description |
---|---|---|---|---|
DELTA , Delta | IO | False | Reduced density (rho/rhoc) | |
DMOLAR , Dmolar | mol/m^3 | IO | False | Molar density |
D , DMASS , Dmass | kg/m^3 | IO | False | Mass density |
HMOLAR , Hmolar | J/mol | IO | False | Molar specific enthalpy |
H , HMASS , Hmass | J/kg | IO | False | Mass specific enthalpy |
P | Pa | IO | False | Pressure |
Q | mol/mol | IO | False | Mass vapor quality |
SMOLAR , Smolar | J/mol/K | IO | False | Molar specific entropy |
S , SMASS , Smass | J/kg/K | IO | False | Mass specific entropy |
TAU , Tau | IO | False | Reciprocal reduced temperature (Tc/T) | |
T | K | IO | False | Temperature |
UMOLAR , Umolar | J/mol | IO | False | Molar specific internal energy |
U , UMASS , Umass | J/kg | IO | False | Mass specific internal energy |
ACENTRIC , acentric | O | True | Acentric factor | |
ALPHA0 , alpha0 | O | False | Ideal Helmholtz energy | |
ALPHAR , alphar | O | False | Residual Helmholtz energy | |
A , SPEED_OF_SOUND , speed_of_sound | m/s | O | False | Speed of sound |
BVIRIAL , Bvirial | O | False | Second virial coefficient | |
CONDUCTIVITY , L , conductivity | W/m/K | O | False | Thermal conductivity |
CP0MASS , Cp0mass | J/kg/K | O | False | Ideal gas mass specific constant pressure specific heat |
CP0MOLAR , Cp0molar | J/mol/K | O | False | Ideal gas molar specific constant pressure specific heat |
CPMOLAR , Cpmolar | J/mol/K | O | False | Molar specific constant pressure specific heat |
CVIRIAL , Cvirial | O | False | Third virial coefficient | |
CVMASS , Cvmass , O | J/kg/K | O | False | Mass specific constant volume specific heat |
CVMOLAR , Cvmolar | J/mol/K | O | False | Molar specific constant volume specific heat |
C , CPMASS , Cpmass | J/kg/K | O | False | Mass specific constant pressure specific heat |
DALPHA0_DDELTA_CONSTTAU , dalpha0_ddelta_consttau | O | False | Derivative of ideal Helmholtz energy with delta | |
DALPHA0_DTAU_CONSTDELTA , dalpha0_dtau_constdelta | O | False | Derivative of ideal Helmholtz energy with tau | |
DALPHAR_DDELTA_CONSTTAU , dalphar_ddelta_consttau | O | False | Derivative of residual Helmholtz energy with delta | |
DALPHAR_DTAU_CONSTDELTA , dalphar_dtau_constdelta | O | False | Derivative of residual Helmholtz energy with tau | |
DBVIRIAL_DT , dBvirial_dT | O | False | Derivative of second virial coefficient with respect to T | |
DCVIRIAL_DT , dCvirial_dT | O | False | Derivative of third virial coefficient with respect to T | |
DIPOLE_MOMENT , dipole_moment | C m | O | True | Dipole moment |
FH | O | True | Flammability hazard | |
FRACTION_MAX , fraction_max | O | True | Fraction (mole, mass, volume) maximum value for incompressible solutions | |
FRACTION_MIN , fraction_min | O | True | Fraction (mole, mass, volume) minimum value for incompressible solutions | |
FUNDAMENTAL_DERIVATIVE_OF_GAS_DYNAMICS , fundamental_derivative_of_gas_dynamics | O | False | Fundamental derivative of gas dynamics | |
GAS_CONSTANT , gas_constant | J/mol/K | O | True | Molar gas constant |
GMOLAR_RESIDUAL , Gmolar_residual | J/mol/K | O | False | Residual molar Gibbs energy |
GMOLAR , Gmolar | J/mol | O | False | Molar specific Gibbs energy |
GWP100 | O | True | 100-year global warming potential | |
GWP20 | O | True | 20-year global warming potential | |
GWP500 | O | True | 500-year global warming potential | |
G , GMASS , Gmass | J/kg | O | False | Mass specific Gibbs energy |
HELMHOLTZMASS , Helmholtzmass | J/kg | O | False | Mass specific Helmholtz energy |
HELMHOLTZMOLAR , Helmholtzmolar | J/mol | O | False | Molar specific Helmholtz energy |
HH | O | True | Health hazard | |
HMOLAR_RESIDUAL , Hmolar_residual | J/mol/K | O | False | Residual molar enthalpy |
ISENTROPIC_EXPANSION_COEFFICIENT , isentropic_expansion_coefficient | O | False | Isentropic expansion coefficient | |
ISOBARIC_EXPANSION_COEFFICIENT , isobaric_expansion_coefficient | 1/K | O | False | Isobaric expansion coefficient |
ISOTHERMAL_COMPRESSIBILITY , isothermal_compressibility | 1/Pa | O | False | Isothermal compressibility |
I , SURFACE_TENSION , surface_tension | N/m | O | False | Surface tension |
M , MOLARMASS , MOLAR_MASS , MOLEMASS , molar_mass , molarmass , molemass | kg/mol | O | True | Molar mass |
ODP | O | True | Ozone depletion potential | |
PCRIT , P_CRITICAL , Pcrit , p_critical , pcrit | Pa | O | True | Pressure at the critical point |
PHASE , Phase | O | False | Phase index as a float | |
PH | O | True | Physical hazard | |
PIP | O | False | Phase identification parameter | |
PMAX , P_MAX , P_max , pmax | Pa | O | True | Maximum pressure limit |
PMIN , P_MIN , P_min , pmin | Pa | O | True | Minimum pressure limit |
PRANDTL , Prandtl | O | False | Prandtl number | |
PTRIPLE , P_TRIPLE , p_triple , ptriple | Pa | O | True | Pressure at the triple point (pure only) |
P_REDUCING , p_reducing | Pa | O | True | Pressure at the reducing point |
RHOCRIT , RHOMASS_CRITICAL , rhocrit , rhomass_critical | kg/m^3 | O | True | Mass density at critical point |
RHOMASS_REDUCING , rhomass_reducing | kg/m^3 | O | True | Mass density at reducing point |
RHOMOLAR_CRITICAL , rhomolar_critical | mol/m^3 | O | True | Molar density at critical point |
RHOMOLAR_REDUCING , rhomolar_reducing | mol/m^3 | O | True | Molar density at reducing point |
SMOLAR_RESIDUAL , Smolar_residual | J/mol/K | O | False | Residual molar entropy (sr/R = s(T,rho) - s^0(T,rho)) |
TCRIT , T_CRITICAL , T_critical , Tcrit | K | O | True | Temperature at the critical point |
TMAX , T_MAX , T_max , Tmax | K | O | True | Maximum temperature limit |
TMIN , T_MIN , T_min , Tmin | K | O | True | Minimum temperature limit |
TTRIPLE , T_TRIPLE , T_triple , Ttriple | K | O | True | Temperature at the triple point |
T_FREEZE , T_freeze | K | O | True | Freezing temperature for incompressible solutions |
T_REDUCING , T_reducing | K | O | True | Temperature at the reducing point |
V , VISCOSITY , viscosity | Pa s | O | False | Viscosity |
Z | O | False | Compressibility factor |
*출처: http://www.coolprop.org/coolprop/HighLevelAPI.html#propssi-function
「HAPropsSI」의 경우 세 가지 상태량을 입력값으로 줘야하며 함수 구조는 다음과 같다. (절대습도/상대습도 둘 중 하나는 반드시 들어가야 함.)
Property_air = HAPropsSI("Parameter", "Par_input_1", input_1_value, "Par_input_2", input_2_value, "Par_input_3", input_3_value)
<표2: 공기의 Parameter 종류 및 설명>
Parameter | Units | Input/Output | Description |
---|---|---|---|
B , Twb , T_wb , WetBulb | K | Input/Output | Wet-Bulb Temperature |
C , cp | J/kg dry air/K | Output | Mixture specific heat per unit dry air |
Cha , cp_ha | J/kg humid air/K | Output | Mixture specific heat per unit humid air |
CV | J/kg dry air/K | Output | Mixture specific heat at constant volume per unit dry air |
CVha , cv_ha | J/kg humid air/K | Output | Mixture specific heat at constant volume per unit humid air |
D , Tdp , DewPoint , T_dp | K | Input/Output | Dew-Point Temperature |
H , Hda , Enthalpy | J/kg dry air | Input/Output | Mixture enthalpy per dry air |
Hha | J/kg humid air | Input/Output | Mixture enthalpy per humid air |
K , k , Conductivity | W/m/K | Output | Mixture thermal conductivity |
M , Visc , mu | Pa-s | Output | Mixture viscosity |
psi_w , Y | mol water/mol humid air | Input/Output | Water mole fraction |
P | Pa | Input | Pressure |
P_w | Pa | Input | Partial pressure of water vapor |
R , RH , RelHum | Input/Output | Relative humidity in [0, 1] | |
S , Sda , Entropy | J/kg dry air/K | Input/Output | Mixture entropy per unit dry air |
Sha | J/kg humid air/K | Input/Output | Mixture entropy per unit humid air |
T , Tdb , T_db | K | Input/Output | Dry-Bulb Temperature |
V , Vda | m /kg dry air | Input/Output | Mixture volume per unit dry air |
Vha | m /kg humid air | Input/Output | Mixture volume per unit humid air |
W , Omega , HumRat | kg water/kg dry air | Input/Output | Humidity Ratio |
Z | Output | Compressibility factor (Z = ) |
추가로 「Excel」에서는 냉매의 경우 PhaseSI 로 유체의 상(phase)을 구하거나 Props1SI 로 임계점(critical point)을 계산할 수 있으며,
「Python」에서는 PropsSI 에서 "Phase" 를 입력하여 유체의 상(phase)을 구하거나, "p_critical" 을 입력하여 임계점(critical point)을 계산할 수 있다.
해당 내용은 뒤에서 자세히 다루도록 하자.